Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(1): 319-328, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592614

RESUMO

Both Gram-positive and Gram-negative bacteria release nanosized extracellular vesicles called membrane vesicles (MVs, 20-400 nm), which have great potential in various biomedical applications due to their abilities to deliver effector molecules and induce therapeutic responses. To fully utilize bacterial MVs for therapeutic purposes, regulated and enhanced production of MVs would be highly advantageous. In this study, we developed a universal method to enhance MV yields in both G+/G- bacteria through an autonomous controlled peptidoglycan hydrolase (PGase) expression system. A significant increase (9.37-fold) of MV concentration was observed in engineered E. coli Nissle 1917 compared to the wild-type. With the help of this autonomous system, for the first time we experimentally confirmed horizontal gene transfer and nutrient acquisition in a cocultured bacterial consortium. Furthermore, the engineered probiotic E. coli strains with high yield of MVs showed higher activation of the innate immune responses in human embryonic kidney 293T (HEK293T) and human colorectal carcinoma cells (HCT116), thereby demonstrating the great potential of engineering probiotics in immunology and further living therapeutics in humans.


Assuntos
Escherichia coli , Vesículas Extracelulares , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Células HEK293 , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Bactérias , Imunidade Inata
2.
Metab Eng ; 74: 98-107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244545

RESUMO

Rising concerns about climate change and sustainable energy have attracted efforts towards developing environmentally friendly alternatives to fossil fuels. Biosynthesis of n-butane, a highly desirable petro-chemical, fuel additive and diluent in the oil industry, remains a challenge. In this work, we first engineered enzymes Tes, Car and AD in the termination module to improve the selectivity of n-butane biosynthesis, and ancestral reconstruction and a synthetic RBS significantly improved the AD abundance. Next, we did ribosome binding site (RBS) calculation to identify potential metabolic bottlenecks, and then mitigated the bottleneck with RBS engineering and precursor propionyl-CoA addition. Furthermore, we employed a model-assisted strain design and a nonrepetitive extra-long sgRNA arrays (ELSAs) and quorum sensing assisted CRISPRi to facilitate a dynamic two-stage fermentation. Through systems engineering, n-butane production was increased by 168-fold from 0.04 to 6.74 mg/L. Finally, the maximum n-butane production from acetate was predicted using parsimonious flux balance analysis (pFBA), and we achieved n-butane production from acetate produced by electrocatalytic CO reduction. Our findings pave the way for selectively producing n-butane from renewable carbon source.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Butanos/metabolismo , Acetatos/metabolismo
3.
Microb Cell Fact ; 20(1): 184, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556155

RESUMO

BACKGROUND: Microorganisms can be metabolically engineered to produce a wide range of commercially important chemicals. Advancements in computational strategies for strain design and synthetic biological techniques to construct the designed strains have facilitated the generation of large libraries of potential candidates for chemical production. Consequently, there is a need for high-throughput laboratory scale techniques to characterize and screen these candidates to select strains for further investigation in large scale fermentation processes. Several small-scale fermentation techniques, in conjunction with laboratory automation have enhanced the throughput of enzyme and strain phenotyping experiments. However, such high throughput experimentation typically entails large operational costs and generate massive amounts of laboratory plastic waste. RESULTS: In this work, we develop an eco-friendly automation workflow that effectively calibrates and decontaminates fixed-tip liquid handling systems to reduce tip waste. We also investigate inexpensive methods to establish anaerobic conditions in microplates for high-throughput anaerobic phenotyping. To validate our phenotyping platform, we perform two case studies-an anaerobic enzyme screen, and a microbial phenotypic screen. We used our automation platform to investigate conditions under which several strains of E. coli exhibit the same phenotypes in 0.5 L bioreactors and in our scaled-down fermentation platform. We also propose the use of dimensionality reduction through t-distributed stochastic neighbours embedding (t-SNE) in conjunction with our phenotyping platform to effectively cluster similarly performing strains at the bioreactor scale. CONCLUSIONS: Fixed-tip liquid handling systems can significantly reduce the amount of plastic waste generated in biological laboratories and our decontamination and calibration protocols could facilitate the widespread adoption of such systems. Further, the use of t-SNE in conjunction with our automation platform could serve as an effective scale-down model for bioreactor fermentations. Finally, by integrating an in-house data-analysis pipeline, we were able to accelerate the 'test' phase of the design-build-test-learn cycle of metabolic engineering.


Assuntos
Automação Laboratorial/métodos , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica/instrumentação , Engenharia Metabólica/métodos , Anaerobiose , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos
4.
Metab Eng ; 62: 186-197, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827703

RESUMO

Microbial metabolism can be harnessed to produce a broad range of industrially important chemicals. Often, three key process variables: Titer, Rate and Yield (TRY) are the target of metabolic engineering efforts to improve microbial hosts toward industrial production. Previous research into improving the TRY metrics have examined the efficacy of having distinct growth and production stages to achieve enhanced productivity. However, these studies assumed a switch from a maximum growth to a maximum production phenotype. Hence, phenotypes with intermediate growth and chemical production in each of the growth and production stages of two-stage processes are yet to be explored. The impact of reduced growth rates on substrate uptake adds to the need for intelligent choice of operating points while designing two-stage processes. In this work, we develop a computational framework that scans the phenotypic space of microbial metabolism to identify ideal growth and production phenotypic targets, to achieve optimal TRY targets. Using this framework, with Escherichia coli as a model organism, we compare two-stage processes that use dynamic pathway regulation, with one-stage processes that use static intervention strategies, for different bioprocess objectives. Our results indicate that two-stage processes with intermediate growth during the production stage always result in optimal TRY values even in cases where substrate uptake is limited due to reduced growth during chemical production. By analyzing the flux distributions for the production enhancing strategies, we identify key reactions and reaction subsystems that require perturbation to achieve a production phenotype for a wide range of metabolites in E. coli. Interestingly, flux perturbations that increase phosphoenolpyruvate and NADPH availability are enriched among these production phenotypes. Furthermore, reactions in the pentose phosphate pathway emerge as key control nodes that function together to increase the availability of precursors to most products in E. coli. The inherently modular nature of microbial metabolism results in common reactions and reaction subsystems that need to be regulated to modify microbes from their target of growth to the production of a diverse range of metabolites. Due to the presence of these common patterns in the flux perturbations, we propose the possibility of a universal production strain.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , NADP/metabolismo , Via de Pentose Fosfato
6.
Metab Eng Commun ; 9: e00089, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31011536

RESUMO

Microorganisms can be genetically engineered to solve a range of challenges in diverse including health, environmental protection and sustainability. The natural complexity of biological systems makes this an iterative cycle, perturbing metabolism and making stepwise progress toward a desired phenotype through four major stages: design, build, test, and data interpretation. This cycle has been accelerated by advances in molecular biology (e.g. robust DNA synthesis and assembly techniques), liquid handling automation and scale-down characterization platforms, generating large heterogeneous data sets. Here, we present an extensible Python package for scientists and engineers working with large biological data sets to interpret, model, and visualize data: the IMPACT (Integrated Microbial Physiology: Analysis, Characterization and Translation) framework. Impact aims to ease the development of Python-based data analysis workflows for a range of stakeholders in the bioengineering process, offering open-source tools for data analysis, physiology characterization and translation to visualization. Using this framework, biologists and engineers can opt for reproducible and extensible programmatic data analysis workflows, mediating a bottleneck limiting the throughput of microbial engineering. The Impact framework is available at https://github.com/lmse/impact.

7.
ACS Synth Biol ; 7(12): 2854-2866, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30376634

RESUMO

Metabolic engineers aim to genetically modify microorganisms to improve their ability to produce valuable compounds. Despite the prevalence of growth-coupled production processes, these strategies can significantly limit production rates. Instead, rates can be improved by decoupling and optimizing growth and production independently, and operating with a growth stage followed by a production stage. Here, we implement a bistable transcriptional controller to decouple and switch between these two states. We optimize the controller in anaerobic conditions, typical of industrial fermentations, to ensure stability and tight expression control, while improving switching dynamics. The stability of this controller can be maintained through a simulated seed train scale-up from 5 mL to 500 000 L, indicating industrial feasibility. Finally, we demonstrate a two-stage production process using our optimal construct to improve the instantaneous rate of lactate production by over 50%, motivating the use of these systems in broad metabolic engineering applications.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Anaerobiose , Técnicas de Cultura Celular por Lotes/métodos , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
8.
Metab Eng Commun ; 6: 28-32, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29487800

RESUMO

Adipic acid is an important industrial chemical used in the synthesis of nylon-6,6. The commercial synthesis of adipic acid uses petroleum-derived benzene and releases significant quantities of greenhouse gases. Biocatalytic production of adipic acid from renewable feedstocks could potentially reduce the environmental damage and eliminate the need for fossil fuel precursors. Recently, we have demonstrated the first enzymatic hydrogenation of muconic acid to adipic acid using microbial enoate reductases (ERs) - complex iron-sulfur and flavin containing enzymes. In this work, we successfully expressed the Bacillus coagulans ER in a Saccharomyces cerevisiae strain producing muconic acid and developed a three-stage fermentation process enabling the synthesis of adipic acid from glucose. The ability to express active ERs and significant acid tolerance of S. cerevisiae highlight the applicability of the developed yeast strain for the biocatalytic production of adipic acid from renewable feedstocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...